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On S-2-absorbing submodules and vn-regular
modules

Gülşen Ulucak, Ünsal Tekir and Suat Koç

Abstract

Let R be a commutative ring and M an R-module. In this article, we
introduce the concept of S-2-absorbing submodule. Suppose that S ⊆ R
is a multiplicatively closed subset of R. A submodule P of M with
(P :R M) ∩ S = ∅ is said to be an S-2-absorbing submodule if there
exists an element s ∈ S and whenever abm ∈ P for some a, b ∈ R and
m ∈M , then sab ∈ (P :R M) or sam ∈ P or sbm ∈ P. Many examples,
characterizations and properties of S-2-absorbing submodules are given.
Moreover, we use them to characterize von Neumann regular modules
in the sense [9].

1 Introduction

In this article, we focus only on commutative rings with nonzero identity
and nonzero unital modules. Let R always denote such a ring and M de-
note such an R-module. The notion of prime submodule has an important
place in commutative algebra and it is frequently used to classify the modules.
Also, there have been many generalizations and study of prime submodules.
See, for example, [5], [7], [10], [14], [16] and [17]. Recently, the authors in
[18], introduced the notion of S-prime submodules which is a generalation of
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prime submodules and they used the S-prime submodules to characterize cer-
tain class of modules such as torsion free modules and simple modules. Let
S ⊆ R be a multiplicatively closed subset, that is, S satisfies the following
conditions: (i) 1 ∈ S and (ii) s1s2 ∈ S for each s1, s2 ∈ S. Recall from [18]
that a submodule P of M with (P :R M) ∩ S = ∅ is said to be an S-prime
submodule if there exists a fixed s ∈ S such that am ∈ P for some a ∈ R and
m ∈ M implies that sa ∈ (P :R M) or sm ∈ P. In particular, an ideal I of
R is an S-prime ideal if I is an S-prime submodule of R-module R. One of the
important generalizations of prime submodule is the concept of 2-absorbing
submodule. Recall from [5] that a proper submodule N of M is said to be a
2-absorbing submodule if whenever abm ∈ N for some a, b ∈ R and m ∈ M,
then either ab ∈ (N :R M) or am ∈ N or bm ∈ N. Predictably, a proper ideal
I of R is a 2-absorbing ideal if and only if I is a 2-absorbing submodule of
R-module R. The aim of this paper is to study the concept of S-2-absorbing
submodule and use them to characterize von Neumann regular modules in the
sense [9]. For the sake of completeness, will give some notations which will be
used throughout this article.

Let N be a submodule of M, K be a nonempty subset of M and I be an
ideal of R. Then we define the residuals of N by K and I as follows:

(N :R K) = {r ∈ R : rK ⊆ N}
(N :M I) = {m ∈M : Im ⊆ N}.

Particularly, (0 :R M) is denoted by ann(M). Also we use (N :M s) to denote
(N :M Rs) for each s ∈ R and we use (N :R m) to denote (N :R Rm) for each
m ∈M .

In this study, we introduce the concept of S-2-absorbing submodules of
a module which is a generalization of S-prime submodules and 2-absorbing
submodules. Also, this concept can be considered as a unification of S-prime
and 2-absorbing submodules. A submodule P of M is said to be an S-2-
absorbing submodule if (P :R M) ∩ S = ∅ and there exists a fixed s ∈ S such
that abm ∈ P for some a, b ∈ R and m ∈ M implies that sab ∈ (P :R M) or
sam ∈ P or sbm ∈ P. In particular, an ideal I of R is an S-2-absorbing
ideal if I is an S-2-absorbing submodule of R-module R. Note that a 2-
absorbing submodule P of M with (P :R M) ∩ S = ∅ is also S-2-absorbing
but the converse is not true (See Example 1 and Example 3). Also note that if
S ⊆ u(R), where u(R) is the set of units in R, then S-2-absorbing submodules
and 2-absorbing submodules coincide (See Example 2). Among other results in
this paper, in Section 2, we study the properties of S-2-absorbing submodules
similar to 2-absorbing submodules. Also, we give the relations between S-
prime and S-2-absorbing submodules (See Proposition 1 and Proposition 2).
Furthermore, we investigate the behavior of S-2-absorbing submodules under
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localization, homomorphism, in trivial extension and in cartesian product of
modules (See Proposition 1, Proposition 4, Proposition 6 and Theorem 3). In
Theorem 1, we show that P is an S-2-absorbing submodule of M if and only
if there exists an s ∈ S such that IJN ⊆ P for some ideals I, J of R and
some submodule N of M implies sIN ⊆ P or sJN ⊆ P or sIJ ⊆ (P :R M).
Recall from [8] that an R-module M is said to be a multiplication module if
for each submodule N of M, there exists an ideal I of R such that N = IM, or
equivalently, N = (N :R M)M. In Theorem 2, we give a characterization of
S-2-absorbing submodules in multiplication modules.

Section 3 is devoted to the study of von Neumann regular modules in the
sense [9]. Recall from [21] that a ring R is said to be a von Neumann regular
(for short, vn-regular) ring if for each a ∈ R there exists an x ∈ R such
that a = a2x. In this case, the principal ideal (a) = (e) is generated by an
idempotent element e ∈ R. Note that a ring R is a vn-regular ring if and only
if (a) = (a2) for each a ∈ R. So far, the concept of vn-regular rings has been
studied in many papers and has various generalizations. See, for example, [12],
[13] and [22]. Recently, Jayaram and Tekir extended the notion of vn-regular
ring to modules as follows: an R-module M is said to be a vn-regular module
if for each m ∈M, there exists a ∈ R such that Rm = aM = a2M. In section
3, we first prove the Chinese Remainder Theorem for modules (See Theorem
5). Finally, we characterize vn-regular modules in terms of S-2-absorbing
submodules (See, Proposition 9 and Theorem 6).

2 S-2-Absorbing submodules

Definition 1. Let M be an R-module and S a multiplicatively closed subset
of R. A submodule P of M is said to be an S-2-absorbing if (P :R M)∩S = ∅
and there exists a fixed s ∈ S such that abm ∈ P for some a, b ∈ R and
m ∈M implies that sab ∈ (P :R M) or sam ∈ P or sbm ∈ P.

Example 1. Let M be an R-module and S a multiplicatively closed subset of
R. Every 2-absorbing submodule P of M with (P :R M) ∩ S = ∅ is also an
S-2-absorbing.

Example 2. Let M be an R-module and S ⊆ R a multiplicatively closed subset
consisting of units in R. Then a submodule P of M is 2-absorbing submodule
if and only if P is S-2-absorbing.

Example 3. Consider the Z-module M = Z × Zpq, where p 6= q are prime
numbers. Then the zero submodule P is not 2-absorbing since pq(0, 1) =
(0, 0) ∈ P but pq /∈ (P :Z M) = 0, p(0, 1) = (0, p) /∈ P and q(0, 1) = (0, q) /∈
P. On the other hand, set S = reg(Z) and put s = pq ∈ S. If ab(x,m) ∈ P for
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some a, b, x,m ∈ Z, then abx = 0. Without loss of generality, assume that
a = 0. Then sa(x,m) = (0, 0) ∈ P. Thus P is an S-2-absorbing submodule of
M.

Let R be a ring and S ⊆ R a multiplicatively closed subset of R. The
saturation S? of S is defined as S? = {x ∈ R : x

1 is a unit of S−1R}. Note
that S? is a multiplicatively closed subset containing S.

Proposition 1. Let M be an R-module and S a multiplicatively closed subset
of R. Then the following statements hold:

(i) Every S-prime submodule is an S-2-absorbing submodule.
(ii) Suppose that S1 ⊆ S2 are multiplicatively closed subsets of R. If P is an

S1-2-absorbing submodule and (P :R M)∩S2 = ∅, then P is an S2-2-absorbing
submodule.

(iii) A submodule P of M is an S-2-absorbing submodule if and only if it
is an S?-2-absorbing submodule.

(iv) If P is an S-2-absorbing submodule of M, then S−1P is a 2-absorbing
submodule of S−1M.

Proof. (i), (ii): It is clear.
(iii): Let P be an S-2-absorbing submodule of M. Assume that (P :R

M) ∩ S? 6= ∅. Then we have r ∈ (P :R M) ∩ S∗. Then r
1 is a unit of S−1R,

that is, r
1
a
s = 1 for some a ∈ R and s ∈ S since r ∈ S?. Hence us = ura ∈ S for

some u ∈ S. Then we get ura ∈ (P :R M) ∩ S which is a contradiction. Thus
we obtain (P :R M)∩S∗ = ∅. Then by (ii), P is an S?-2-absorbing submodule
of M since S ⊆ S?. For the converse, suppose that P is an S?-2-absorbing
submodule of M. Given abm ∈ P for some a, b ∈ R and m ∈ M. Then there
exists s′ ∈ S? such that s′ab ∈ (P :R M) or s′am ∈ P or s′bm ∈ P. On

the other hand, s′

1
x
s = 1 for some x ∈ R, s ∈ S and so us′x = us for some

u ∈ S. Note that t = us ∈ S. Also, we have tab ∈ (P :R M) or tam ∈ P or
tbm ∈ P. Thus P is an S-2-absorbing submodule.

(iv): Let a
s
b
t
m
u ∈ P for some a

s ,
b
t ∈ S−1R and m

u ∈ S−1M. Then we
get u′abm = (u′a)bm ∈ P for some u′ ∈ S. By the assumption, there is
an s′ ∈ S such that s′(u′a)b ∈ (P :R M) or s′(u′a)m ∈ P or s′bm ∈ P .

Thus we have either a
s
b
t = s′u′ab

s′u′st ∈ S
−1(P :R M) ⊆ (S−1P :S−1R S−1M) or

a
s
m
u = s′u′am

s′u′su ∈ S
−1P or b

t
m
u = s′bm

s′tu ∈ S
−1P. Hence, S−1P is a 2-absorbing

submodule of S−1M.

The converses of (i) in previous proposition is not true in general. To see
this, take S as the set of units in a ring R and remember that any 2-absorbing
submodule need not be a prime submodule. The following example shows that
the converse of (iv) in previous proposition is not always true.
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Example 4. (S−1P is 2-absorbing but P is not S-2-absorbing): Consider the
Z-module M = Q3 and S = reg(Z) = Z − {0}. Let P = {(m,n, 0) : m,n ∈
Z}. Then note that (P :Z M) = 0 and (P :Z M)∩S = ∅. Now, take s ∈ S. Then
there exist prime numbers p 6= q such that gcd(p, s) = gcd(q, s) = 1. Also it is
clear that pq( 1

p ,
1
q , 0) = (q, p, 0) ∈ P but sp( 1

p ,
1
q , 0) /∈ P, sq( 1

p ,
1
q , 0) /∈ P and

spq 6= 0. Thus P is not S-2-absorbing submodule. Further, note that S−1M is
a vector space and the proper subspace S−1P is a 2-absorbing submodule.

Proposition 2. Let S be a multiplicatively closed subset of R and M an R-
module. Then the intersection of two S-prime submodule is an S-2-absorbing.

Proof. Let P1, P2 be two S-prime submodules of M and P = P1 ∩ P2. Let
abm ∈ P for some a, b ∈ R and m ∈ M. Since P1 is an S-prime submodule
and abm ∈ P1, there exists s1 ∈ S such that s1a ∈ (P1 :R M) or s1bm ∈
P1. Now, we will show that s1bm ∈ P1 implies that s1b ∈ (P1 :R M) or s1m ∈
P1. Assume that s1bm = b(s1m) ∈ P1. Since P1 is an S-prime submodule, we
get either s1b ∈ (P1 :R M) or s21m ∈ P1. If s1b ∈ (P1 :R M), then we are
done. So assume that s21m ∈ P1. By [18, Lemma 2.16], we know that (P1 :M
s21) ⊆ (P1 :M s1) and this yields m ∈ (P1 :M s21) ⊆ (P1 :M s1). Thus we have
s1m ∈ P1. In a similar manner, since P2 is an S-prime submodule, there exists
s2 ∈ S such that s2a ∈ (P2 :R M) or s2b ∈ (P2 :R M) or s2m ∈ P2. Without
loss of generality, we may assume that s1a ∈ (P1 :R M) and s2m ∈ P2. Now,
put s = s1s2 ∈ S. This implies that sam ∈ P and hence P is an S-2-absorbing
submodule of M.

The intersection of two S-2-absorbing submodules is not necessarily S-2-
absorbing. See the following example.

Example 5. Let p, q, r be distinct prime numbers. Consider Z-module M =
Z× Z. Now, set S = {m ∈ Z : gcd(m, pqr) = 1}. Then S is a multiplicatively
closed subset of Z. Then note that P1 = pqZ × Z and P2 = Z × prZ are S-2-
absorbing submodules of M. Also we have P = P1∩P2 = pqZ×prZ. Now, take
s ∈ S. Then gcd(s, p) = gcd(s, q) = gcd(s, r) = 1. Also note that pq(1, r) =
(pq, pqr) ∈ P but spq /∈ (P :Z M), sp(1, r) /∈ P and sq(1, r) /∈ P. Thus P is
not S-2-absorbing submodule.

Lemma 1. Let S be a multiplicatively closed subset of R. If P is a submodule
of M with (P :R M) ∩ S = ∅, then the following statements are equivalent:

(i) P is an S-2-absorbing submodule of M .
(ii) There exists an s ∈ S such that abN ⊆ P for some a, b ∈ R and a

submodule N of M implies either saN ⊆ P or sbN ⊆ P or sab ∈ (P :R M).

Proof. (i) ⇒ (ii): Suppose that P is an S-2-absorbing submodule of M . We
know that there exists s ∈ S such that xym ∈ P for some x, y ∈ R and
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m ∈ M implies sxy ∈ (P :R M) or sxm ∈ P or sym ∈ P. Let abN ⊆ P for
some a, b ∈ R and a submodule N of M . Now, we will show that saN ⊆ P
or sbN ⊆ P or sab ∈ (P :R M). Suppose to the contrary. Then saN *
P , sbN * P and sab /∈ (P :R M). We have n1, n2 ∈ N with san1 /∈ P
and sbn2 /∈ P . Since abn1 ∈ P , sab /∈ (P :R M) and san1 /∈ P , we get
sbn1 ∈ P since P is S-2-absorbing. In a similar manner, we have san2 ∈ P .
On the other hand, we have ab(n1 + n2) ∈ P and sab /∈ (P :R M). Then
either sa(n1 + n2) ∈ P or sb(n1 + n2) ∈ P since P is S-2-absorbing. Let
sa(n1 + n2) = san1 + san2 ∈ P . Then this yields that san1 ∈ P since
san2 ∈ P , a contradiction. Let sb(n1 + n2) = sbn1 + sbn2 ∈ P . Then we
get sbn2 ∈ P since sbn1 ∈ P , again a contradiction. Therefore, saN ⊆ P or
sbN ⊆ P or sab ∈ (P :R M).

(ii)⇒ (i): It is clear.

Corollary 1. Let S be a multiplicatively closed subset of R and P an ideal
of R with P ∩ S = ∅. Then P is an S-2-absorbing ideal of R if and only if
there exists an s ∈ S such that abI ⊆ P for some a, b ∈ R and an ideal I of R
implies either saI ⊆ P or sbI ⊆ P or sab ∈ P .

Theorem 1. Let S be a multiplicatively closed subset of R and P a submodule
of R-module M with (P :R M) ∩ S = ∅. P is an S-2-absorbing submodule of
M if and only if there exists an s ∈ S such that IJN ⊆ P for some ideals I, J
of R and some submodule N of M implies either sIN ⊆ P or sJN ⊆ P or
sIJ ⊆ (P :R M).

Proof. (⇐): Directly from definition.
(⇒): Suppose that P is an S-2-absorbing submodule of M. Then there exists
an s ∈ S and whenever abm ∈ P for some a, b ∈ R and m ∈ M then either
sab ∈ (P :R M) or sam ∈ P or sbm ∈ P. Given IJN ⊆ P for some ideals I, J
of R and some submodule N of M, we must show that sIN ⊆ P or sJN ⊆ P
or sIJ ⊆ (P :R M). Suppose to the contrary. Then there exists x ∈ I and
y ∈ J such that sxN * P and syN * P . By Lemma 1, it is obtained that
sxy ∈ (P :R M) since xyN ⊆ P . On the other hand, since sIJ * (P :R M),
there exist a ∈ I and b ∈ J such that sab /∈ (P :R M). Then by Lemma 1,
we have saN ⊆ P or sbN ⊆ P since abN ⊆ P . Consider the following three
cases:
First case: Assume that saN ⊆ P but sbN * P . Note that xbN ⊆ P ,
sbN * P and sxN * P . Then we conclude that sxb ∈ (P :R M) by Lemma
1. Since sxN * P and saN ⊆ P , we also have s(x + a)N * P . Then by
Lemma 1, we have s(a+x)b ∈ (P :R M) since (a+x)bN ⊆ P , s(a+x)N * P
and sbN * P . As s(a + x)b ∈ (P :R M) and sxb ∈ (P :R M), we get
sab ∈ (P :R M) which is a contradiction.
Second case: Assume that saN * P and sbN ⊆ P . It can be easily obtained
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in a similar manner to the first case.
Third case: Assume that saN ⊆ P and sbN ⊆ P . Then we get s(b+y)N * P
since syN * P and sbN ⊆ P . Thus by Lemma 1, we get sx(b+y) ∈ (P :R M)
since x(b+ y)N ⊆ P , s(b+ y)N * P and sxN * P . As sx(b+ y) ∈ (P :R M)
and sxy ∈ (P :R M), we have sxb ∈ (P :R M).Also, it is clear that s(a+x)N *
P since sxN * P and saN ⊆ P . Then by Lemma 1, s(a + x)y ∈ (P :R M)
since (a+x)yN ⊆ P , s(a+x)N * P and syN * P . As s(a+x)y ∈ (P :R M)
and sxy ∈ (P :R M), we conclude that say ∈ (P :R M). Also, by Lemma 1,
we get the result that s(a+x)(b+y) = sab+say+sxb+sxy ∈ (P :R M) since
(a+x)(b+ y)N ⊆ P , s(a+x)N * P and s(b+ y)N * P . As s(a+x)(b+ y) ∈
(P :R M) and say, sxy, sxb ∈ (P :R M), we have sab ∈ (P :R M), again a
contradiction.

Corollary 2. Let S be a multiplicatively closed subset of R and P an ideal of
R with P ∩ S = ∅. Then the following statements are equivalent:

(i) P is an S-2-absorbing ideal of R.
(ii) There exists an s ∈ S such that IJK ⊆ P for some ideals I, J and

K of R implies sIJ ⊆ P or sIK ⊆ P or sJK ⊆ P .

Let M be a multiplication R-module and K,L be two submodules of M .
Then K = IM and L = JM for some ideals I, J of R. Also the product of
K and L is defined as KL = IJM [1]. Further, note that this product is
independent of the presentations of submodules K and L of M [1, Theorem
3.4].

Proposition 3. Let S be a multiplicatively closed subset of R. If P is an
S-2-absorbing submodule of M , then (P :R M) is an S-2-absorbing ideal of R.
Also, the converse is true in case M is a multiplication module.

Proof. (⇒) : Assume that P is an S-2-absorbing submodule of M. Let abc ∈
(P :R M) for some a, b, c ∈ R. Then we have RaRb(cM) ⊆ P . Since P is an
S-2-absorbing submodule, by Theorem 1, we have an fixed s ∈ S such that
sRaRb ⊆ (P :R M) or sRa(cM) ⊆ P or sRb(cM) ⊆ P . Thus we get either
sab ∈ (P :R M) or sac ∈ (P :R M) or sbc ∈ (P :R M). Hence, (P :R M) is an
S-2-absorbing ideal of R.

(⇐): Suppose that (P :R M) is an S-2-absorbing ideal of R. Let IJN ⊆ P
for some ideals I, J of R and some submodule N of M . Then it is easy to note
that IJ(N :R M) ⊆ (IJN :R M) ⊆ (P :R M). By Corollary 2, there exists
an s ∈ S such that either sIJ ⊆ (P :R M) or sI(N :R M) ⊆ (P :R M) or
sJ(N :R M) ⊆ (P :R M). Since M is multiplication, we have sIJ ⊆ (P :R M)
or sIN ⊆ P or sJN ⊆ P . Therefore, P is an S-2-absorbing submodule of
M.

As a result of Proposition 3 and Theorem 1, we give the following corollary.
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Corollary 3. Let M be a multiplication R-module, S be a multiplicatively
closed subset of R and P a submodule of M with (P :R M)∩S = ∅. Then the
following statements are equivalent:

(i) P is an S-2-absorbing submodule of M .
(ii) There exists an s ∈ S such that KLN ⊆ P for some submodules

K,L,N of M implies sKL ⊆ P or sKN ⊆ P or sLN ⊆ P .

Theorem 2. Let M be a finitely generated multiplication R-module and S be
a multiplicatively closed subset of R. Suppose that P is a submodule of M with
(P :R M) ∩ S = ∅. Then the following statements are equivalent:

(i) P is an S-2-absorbing submodule of M .
(ii) (P :R M) is an S-2-absorbing ideal of R.
(iii) P = IM for some S-2-absorbing ideal I of R with ann(M) ⊆ I.

Proof. (i)⇔ (ii): It is clear from Proposition 3.
(ii)⇒ (iii): It is obvious.

(iii)⇒ (i): Let JKN ⊆ P for some ideals J,K of R and some submodule
N of M . Then we have JK(N :R M)M ⊆ P = IM . Also by [19, Theorem
9 Corollary], we get JK(N :R M) ⊆ I + ann(M) = I. Then by Corollary 2,
there is an s ∈ S such that sJK ⊆ I or sJ(N :R M) ⊆ I or sK(N :R M) ⊆ I.
So we conclude that sJK ⊆ I ⊆ (P :R M) or sJ(N :R M)M ⊆ IM = P or
sK(N :R M)M ⊆ IM = P , that is, sJK ⊆ I ⊆ (P :R M) or sJN ⊆ P or
sKN ⊆ P . Hence, P is an S-2-absorbing submodule of M .

Proposition 4. Suppose that f : M →M ′ is an R-homomorphism and S ⊆ R
is a multiplicatively closed subset. The following statements hold:

(i) If P ′ is an S-2-absorbing submodule of M ′ and (f−1(P ′) :R M)∩S = ∅,
then f−1(P ′) is an S-2-absorbing submodule of M .

(ii) If f is an epimorphism and P is an S-2-absorbing submodule of M
containing Ker(f), then f(P ) is an S-2-absorbing submodule of M ′.

Proof. (i) Let abm ∈ f−1(P ′) for some a, b ∈ R and m ∈ M. Then we get
f(abm) = abf(m) ∈ P ′. Since P ′ is an S-2-absorbing submodule, there exists
s ∈ S such that either sab ∈ (P ′ :R M ′) or saf(m) = f(sam) ∈ P ′ or
sbf(m) = f(sbm) ∈ P ′. If sab ∈ (P ′ :R M ′), then we conclude that sab ∈
(f−1(P ′) :R M) since (P ′ :R M ′) ⊆ (f−1(P ′) :R M). On the other hand,
if f(sam) ∈ P ′ or f(sbm) ∈ P ′, we can conclude either sam ∈ f−1(P ′) or
sbm ∈ f−1(P ′). Hence, f−1(P ′) is an S-2-absorbing submodule of M .

(ii) Suppose that P is an S-2-absorbing submodule ofM containingKer(f).
First, we will show that (f(P ) :R M ′)∩S = ∅. Indeed, if (f(P ) :R M ′)∩S 6= ∅,
there is an s ∈ S such that s ∈ (f(P ) :R M ′). This implies that sM ′ ⊆ f(P )
and so f(sM) = sf(M) ⊆ sM ′ ⊆ f(P ). Thus, we have sM ⊆ sM +Ker(f) ⊆
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P + Ker(f) = P , that is, sM ⊆ P which contradicts with P is an S-2-
absorbing submodule. Now, suppose that abm′ ∈ f(P ) for some a, b ∈ R
and m′ ∈ M ′. Then m′ = f(m) for some m ∈ M as f is an epimoprhism.
This implies that abm′ = abf(m) = f(abm) ∈ f(P ). As Ker(f) ⊆ P, we
get abm ∈ P. Since P is an S-2-absorbing submodule of M, there is an
s ∈ S such that sab ∈ (P :R M) or sam ∈ P or sbm ∈ P. Consequently,
we obtain that sab ∈ (f(P ) :R M ′) or f(sam) = sf(am) = sam′ ∈ f(P ) or
f(sbm) = sf(bm) = sbm′ ∈ f(P ) since (P :R M) ⊆ (f(P ) :R M ′). Therefore,
f(P ) is an S-2-absorbing submodule of M ′.

Corollary 4. Let L be a submodule of an R-module M and S ⊆ R be a
multiplicatively closed subset. The following statements hold:

(i) If P ′ is an S-2-absorbing submodule of M with (P ′ :R L)∩S = ∅, then
L ∩ P ′ is an S-2-absorbing submodule of L.

(ii) Assume that P is a submodule of M containing L. Then P is an S-2-
absorbing submodule of M if and only if P/L is an S-2-absorbing submodule
of M/L.

Proof. (i) Consider that the injection i : L → M defined by i(m) = m for all
m ∈ L. Then we have i−1(P ′) = L ∩ P ′. Now, we will show that (i−1(P ′) :R
L) ∩ S = ∅. Indeed, if s ∈ (i−1(P ′) :R L) ∩ S, then we have sL ⊆ i−1(P ′) =
L ∩ P ′ ⊆ P ′ and so s ∈ (P ′ :R L) ∩ S, a contradiction. The rest is obtained
by Proposition 4 (1).

(ii) (⇒): Consider the canonical homomorphism π : M →M/L defined by
π(m) = m+L for all m ∈M. The rest of proof is clear by Proposition 4 (2).
(⇐): Let abm ∈ P for some a, b ∈ R and m ∈M. Then we have ab(m+L) =
abm+L ∈ P/L. Thus, there exists an s ∈ S such that sab ∈ (P/L :R M/L) =
(P :R M) or sa(m+L) = sam+L ∈ P/L or sb(m+L) = sbm+L ∈ P/L by
the assumption. Therefore, we get sab ∈ (P :R M) or sam ∈ P or sbm ∈ P .
Consequently, P is an S-2-absorbing submodule of M.

Proposition 5. Let S be a multiplicatively closed subset of R and P be an
S-2-absorbing submodule of R-module M. Suppose that (P :R m) ∩ S = ∅ for
all m ∈ M − P . If (P :R M) is an S-prime ideal of R, then (P :R m) is an
S-prime ideal of R for each m ∈M − P .

Proof. Let P be an S-2-absorbing submodule of R-module M and (P :R m)∩
S = ∅ for all m ∈ M. First note that (P :R M) ∩ S = ∅ since (P :R M) ⊆
(P :R m) for each m ∈ M . Assume that (P :R M) is an S-prime ideal of
R. Given ab ∈ (P :R m) for some a, b ∈ R, we must show that there exists a
fixed s ∈ S such that either sa ∈ (P :R m) or sb ∈ (P :R m). Then abm ∈ P .
Since P is an S-2-absorbing submodule, there exists a fixed s1 ∈ S such that
xym? ∈ P for some x, y ∈ R and m? ∈M implies that either s1xy ∈ (P :R M)
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or s1xm
? ∈ P or s1ym

? ∈ P . On the other hand, since (P :R M) is an S-
prime ideal of R, there exists a fixed s2 ∈ S such that xy ∈ (P :R M) for
some x, y ∈ R implies either s2x ∈ (P :R M) or s2y ∈ (P :R M). Now, put
s = s1s2 ∈ S. Then we can easily get s1ab ∈ (P :R M) or s1am ∈ P or
s1bm ∈ P since P is an S-2-absorbing and abm ∈ P. If s1am ∈ P or s1bm ∈
P, then sa ∈ (P :R m) or sb ∈ (P :R M). Assume that s1ab ∈ (P :R M).
Since (P :R M) is S-prime ideal, then we get either s1s2a ∈ (P :R M) or
s2b ∈ (P :R M). Thus we conclude sa ∈ (P :R M) ⊆ (P :R m) or sb ∈ (P :R
M) ⊆ (P :R m).

Assume that M is an R-module. The trivial extension R ∝ M = R ⊕
M of M is a commutative ring whose addition is componentwise and whose
multiplication is defined as (a,m)(b,m′) = (ab, am′ + bm) for each a, b ∈ R
and m,m′ ∈M [15]. Let I be an ideal of R and N a submodule of M. Then
I ∝ N is an ideal of R ∝ M if and only if IM ⊆ N [3, Theorem 3.3]. In
this case, I ∝ N is called a homogeneous ideal of R ∝ M. Also, if S is a
multiplicatively closed subset of R and P is a submodule of M, then S ∝
P = {(s, p) : s ∈ S, p ∈ P} is a multiplicatively closed subset of R ∝ M [3,
Theorem 3.8].

Proposition 6. Suppose that S is a multiplicatively closed subset of R and P
is an ideal of R with P ∩S = ∅. Then the following statements are equivalent:

(i) P is an S-2-absorbing ideal of R.
(ii) P ∝M is an S ∝ 0-2-absorbing ideal of R ∝M.
(iii) P ∝M is an S ∝M -2-absorbing ideal of R ∝M.

Proof. (i) ⇒ (ii) : Let (x,m)(y,m′)(z,m?) = (xyz, xym? + xzm′ + yzm) ∈
P ∝ M for some x, y, z ∈ R and m,m′,m? ∈ M. Then we get xyz ∈ P. By
the assumption, we have an s ∈ S such that sxy ∈ P or sxz ∈ P or syz ∈
P. Then we obtain (s, 0)(x,m)(y,m′) = (sxy, sxm′ + sym) ∈ P ∝ M or
(s, 0)(x,m)(z,m?) = (sxz, sxm? + szm) ∈ P ∝ M or (s, 0)(y,m′)(z,m?) =
(syz, sym? + szm′) ∈ P ∝ M, where (s, 0) ∈ S ∝ 0. Thus, P ∝ M is an
S ∝ 0-2-absorbing ideal of R ∝M.
(ii)⇒ (iii) : It is clear from Proposition 3 since S ∝ 0 ⊆ S ∝M .
(iii)⇒ (i) : Assume that xyz ∈ P for some x, y, z ∈ R. Then (x, 0)(y, 0)(z, 0) ∈
P ∝ M. Since P ∝ M is an S ∝ M -2-absorbing ideal of R ∝ M , there is an
(s,m) ∈ S ∝ M such that (s,m)(x, 0)(y, 0) = (sxy, xym) ∈ P ∝ M or
(s,m)(y, 0)(z, 0) = (syz, yzm) ∈ P ∝ M or (s,m)(x, 0)(z, 0) = (sxz, xzm) ∈
P ∝M and hence we get sxy ∈ P or syz ∈ P or sxz ∈ P . Therefore, P is an
S-2-absorbing ideal of R.

Let Mi be an Ri-module for each i = 1, 2, . . . , n and n ∈ N. Assume that
M = M1 ×M2 × · · · ×Mn and R = R1 × R2 × · · · × Rn. Then M is clearly
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an R-module with componentwise addition and scalar multiplication. Also,
if Si is a multiplicatively closed subset of Ri for each i = 1, 2, . . . , n, then
S = S1 × S2 × · · · × Sn is a multiplicatively closed subset of R. Furthermore,
each submodule N of M is of the form N = N1×N2×· · ·×Nn, where Ni is a
submodule of Mi. Now, we determine S-2-absorbing submodules of cartesian
product of modules.

Proposition 7. Let Mi be an Ri-module and Si be a multiplicatively closed
subset of Ri for each i = 1, 2. Let M = M1 ×M2, R = R1 × R2 and S =
S1×S2. Assume that N1 is a submodule of M1, N2 is a submodule of M2 and
N = N1 ×N2. Then the following statements are equivalent:

(i) N is an S-2-absorbing submodule of M.
(ii) (N1 :R1 M1) ∩ S1 6= ∅ and N2 is an S2-2-absorbing submodule of M2

or N1 is an S1-2-absorbing submodule of M1 and (N2 :R2 M2) ∩ S2 6= ∅ or
N1 is an S1-prime submodule of M1 and N2 is an S2-prime submodule of M2.

Proof. (i)⇒ (ii) : Assume that N is an S-2-absorbing submodule of M. First,
note that (N :R M) = (N1 :R1

M1) × (N2 :R2
M2) is an S-2-absorbing ideal

of R by Proposition 3. So that (N1 :R1 M1)∩S1 = ∅ or (N2 :R2 M2)∩S2 = ∅.
Assume that (N1 :R1 M1) ∩ S1 6= ∅. Now, we will show that N2 is an S2-
2-absorbing submodule of M2. Let xym ∈ N2 for some x, y ∈ R2 and m ∈
M2. Then we have (0R1

, x)(0R1
, y)(0M1

,m) = (0M1
, xym) ∈ N1×N2 = N. As

N is an S-2-absorbing submodule of M, there exists s = (s1, s2) ∈ S such
that s(0R1 , x)(0R1 , y) = (0R1 , s2xy) ∈ (N :R M) or s(0R1 , x)(0M1 ,m) =
(0M1 , s2xm) ∈ N or s(0R1 , y)(0M1 ,m) = (0M1 , s2ym) ∈ N. This implies that
s2xy ∈ (N2 :R2

M2) or s2xm ∈ N2 or s2ym ∈ N2. Hence, N2 is an S2-2-
absorbing submodule of M2. If (N2 :R2

M2) ∩ S2 6= ∅, similarly N1 is an
S1-2-absorbing submodule of M1. Now assume that (N1 :R1

M1) ∩ S1 = ∅
and (N2 :R2 M2) ∩ S2 = ∅. We will show that N1 is an S1-prime submod-
ule of M1 and N2 is an S2-prime submodule of M2. First, note that there
exists a fixed s = (s1, s2) ∈ S satisfying N to be an S-2-absorbing sub-
module of M. Suppose that N1 is not an S1-prime submodule of M1. Then
there exists a ∈ R1 and m1 ∈ M1 such that am1 ∈ N1 but s1a /∈ (N1 :R1

M1) and s1m1 /∈ N1. On the other hand (N2 :R2 M2) ∩ S2 = ∅, s2 /∈
(N2 :R2 M2) so there exists m2 ∈ M2 such that s2m2 /∈ N2. Also note that
(a, 1)(1, 0)(m1,m2) = (am1, 0M2

) ∈ N1×N2 = N. Since N is an S-2-absorbing
submodule of M, we have either (s1, s2)(a, 1)(1, 0) = (s1a, 0) ∈ (N :R M)
or (s1, s2)(a, 1)(m1,m2) = (s1am1, s2m2) ∈ N or (s1, s2)(1, 0)(m1,m2) =
(s1m1, 0M2) ∈ N. Then we conclude that either s1a ∈ (N1 :R1 M1) or
s1m1 ∈ N1 or s2m2 ∈ N2 which both them are contradictions. Hence, N1 is
an S1-prime submodule of M1. Similar argument shows that N2 is an S2-prime
submodule of M2.
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(ii) ⇒ (i) : Let (N1 :R1 M1) ∩ S1 6= ∅ and N2 be an S2-2-absorbing sub-
module of M2. Now, we will show that N is an S-2-absorbing submodule of
M. First, note that (N :R M) ∩ S = ∅. Let a, b ∈ R1; x, y ∈ R2; m1 ∈
M1 and m2 ∈ M2 such that (a, x)(b, y)(m1,m2) = (abm1, xym2) ∈ N. As
(N1 :R1

M1) ∩ S1 6= ∅, there exists s1 ∈ S1 such that s1m ∈ N1 for all
m ∈ M1. Also there exists a fixed s2 ∈ S2 satisfying N2 to be an S2-2-
absorbing submodule of M2. Now, put s = (s1, s2) ∈ S. Also note that
xym2 ∈ N2. Since N2 is an S2-2-absorbing submodule of M2, we conclude
either s2xy ∈ (N2 :R2

M2) or s2xm2 ∈ N2 or s2ym2 ∈ N2. This yields
that s(a, x)(b, y) = (s1ab, s2xy) ∈ (N1 :R1

M1) × (N2 :R2
M2) = (N :R M)

or s(a, x)(m1,m2) = (s1am1, s2xm2) ∈ N1 × N2 = N or s(b, y)(m1,m2) =
(s1bm1, s2ym2) ∈ N1 × N2 = N. Hence, we conclude that N is an S-2-
absorbing submodule of M. If (N2 :R2

M2) ∩ S2 6= ∅ and N1 is an S1-
2-absorbing submodule of M1, similar argument shows that N is an S-2-
absorbing submodule of M. Now assume that N1 is an S1-prime submodule of
M1 and N2 is an S2-prime submodule of M2. Let a, b ∈ R1; x, y ∈ R2; m1 ∈
M1 and m2 ∈ M2 such that (a, x)(b, y)(m1,m2) = (abm1, xym2) ∈ N. Then
we have abm1 ∈ N1 and xym2 ∈ N2. Since N1 is an S1-prime submodule
of M1, there exists a fixed s1 ∈ S1 such that either s1a ∈ (N1 :R1

M1) or
s1b ∈ (N1 :R1

M1) or s1m1 ∈ N1. Similarly, there exists s2 ∈ S2 such that ei-
ther s2x ∈ (N2 :R2 M2) or s2y ∈ (N2 :R2 M2) or s2m2 ∈ N2. Put s = (s1, s2) ∈
S. Also without loss of generality, we may assume that s1a ∈ (N1 :R1 M1) and
s2m2 ∈ N2. Then we have s(a, x)(m1,m2) = (s1am1, s2xm2) ∈ N1 × N2 =
N. Hence, N is an S-2-absorbing submodule of M.

As seen in the above theorem, we have that if N1 is an S1-2-absorbing
submodule of M1 and N2 is an S2-2-absorbing submodule of M2, then N1×N2

may not be an S1 × S2-2-absorbing submodule of M1 ×M2. See the following
example.

Example 6. Consider the submodules N1 = 9Z and N2 = 4Z of Z-module
Z. Let S1 = Z − 3Z and S2 = Z − 2Z. Note that N1 and N2 are S1 and
S2-2-absorbing submodules of Z, respectively. But N = N1 × N2 is not an
S = S1 × S2-2-absorbing submodule of M = Z× Z since (3, 2)(1, 2)(3, 1) ∈ N
but for each s = (s1, s2) ∈ S, s(3, 2)(1, 2) /∈ (N :Z M), s(1, 2)(3, 1) /∈ N and
s(3, 2)(3, 1) /∈ N.

Theorem 3. Let n ≥ 1 and Mi be an Ri-module and Si be a multiplicatively
closed subset of Ri for each i = 1, 2, . . . , n. Let M = M1×M2×· · ·×Mn, R =
R1×R2×· · ·×Rn and S = S1×S2×· · ·×Sn. Assume that Ni is a submodule
of Mi for each i = 1, 2, . . . , n and N = N1×N2×· · ·×Nn. Then the following
statements are equivalent:

(i) N is an S-2-absorbing submodule of M.
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(ii) Nk is an Sk-2-absorbing submodule of Mk for some 1 ≤ k ≤ n and
(Nt :Rt Mt) ∩ St 6= ∅ for each t ∈ {1, 2, . . . , n} − {k} or Nk1 is an Sk1-
prime submodule of Mk1

and Nk2
is an Sk2

-prime submodule of Mk2
for some

1 ≤ k1 6= k2 ≤ n and (Nt :Rt
Mt)∩St 6= ∅ for each t ∈ {1, 2, . . . , n}−{k1, k2}.

Proof. To prove the result, we will use induction on n. The implication (i)⇔
(ii) is trivial when n = 1. If n = 2, (i) ⇔ (ii) follows from Proposition 7.
Assume that the implication (i) ⇔ (ii) is true for all k < n. Now, we will
prove that (i)⇔ (ii) is true for k = n. Put R = R′ ×Rn, M = M ′ ×Mn and
S = S′×Sn, where R′ = R1×R2× · · · ×Rn−1, M

′ = M1×M2× · · · ×Mn−1
and S′ = S1×S2×· · ·×Sn−1. Also put N = N ′×Nn, where N ′ = N1×N2×
· · · ×Nn−1. Then by Proposition 7, N is an S-2-absorbing submodule of M if
and only if (N ′ :R′ M

′) ∩ S′ 6= ∅ and Nn is an Sn-2-absorbing submodule of
Mn or N ′ is an S′-2-absorbing submodule of M ′ and (Nn :Rn

Mn) ∩ Sn 6= ∅
or N ′ is an S′-prime submodule of M ′ and Nn is an Sn-prime submodule of
Mn. The rest follows from induction hypothesis and [18, Theorem 2.15].

Lemma 2. Let M be an R-module and S ⊆ R a multiplicatively closed subset
of R. Assume that P is an S-2-absorbing submodule of M. Then the following
statements are satisfied:

(i) There exists s ∈ S such that (P :M s3) = (P :M sn) for all n ≥ 3.
(ii) There exists s ∈ S such that (P :R s3M) = (P :R snM) for all n ≥ 3.

Proof. (i) : Assume that P is an S-2-absorbing submodule of M. Then there
exists s ∈ S such that whenever abm ∈ P, where a, b ∈ R and m ∈ M, then
either sab ∈ (P :R M) or sam ∈ N or sbm ∈ P. Now, take m′ ∈ (P :M
s4). Then we have s4m′ = s2s2m′ ∈ P. As P is an S-2-absorbing submodule
of M, we conclude that s(s2m′) = s3m′ ∈ P and so m′ ∈ (P :M s3). Thus
(P :M s4) ⊆ (P :M s3). As the reverse inclusion always holds, we have (P :M
s4) = (P :M s3). Assume that (P :M s3) = (P :M sk) for all k < n. Now, we
will show that (P :M s3) = (P :M sn). Let m′ ∈ (P :M sn). Then snm′ =
s2(sn−2)m′ ∈ P. As P is an S-2-absorbing submodule of M, we conclude either
s3m′ ∈ P or sn−1m′ ∈ P. This implies that m′ ∈ (P :M s3) ∪ (P :M sn−1) =
(P :M s3) by induction hypothesis. Thus we have (P :M s3) = (P :M sn).

(ii) : Follows from (i).

Theorem 4. Let M be an R-module and S ⊆ R a multiplicatively closed
subset of R. Assume that P is a submodule of M with (P :R M) ∩ S = ∅.
Then the following statements are equivalent:

(i) P is an S-2-absorbing submodule.
(ii) (P :M s) is a 2-absorbing submodule for some s ∈ S.
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Proof. (ii) ⇒ (i) : Assume that (P :M s) is a 2-absorbing submodule for
some s ∈ S. Let abm ∈ P ⊆ (P :M s) for some a, b ∈ R and m ∈ M. As
(P :M s) is a 2-absorbing submodule, we conlcude either ab ∈ ((P :M s) : M)
or am ∈ (P :M s) or bm ∈ (P :M s). This implies that sab ∈ (P :R M) or
sam ∈ P or sbm ∈ P . Thus, P is an S-2-absorbing submodule.

(i)⇒ (ii) : Let P be an S-2-absorbing submodule. Fix s ∈ S satisfying P
to be an S-2-absorbing submodule. Then by Lemma 2, we have (P :M s3) =
(P :M sn) and (P :R s3M) = (P :R snM) for all n ≥ 3. Now, we will show that
(P :M s6) = (P :M s3) is a 2-absorbing submodule of M. Let abm ∈ (P :M s6)
for some a, b ∈ R and m ∈M. Then we have s6(abm) = (s2a)(s2b)(s2m) ∈ P.
As P is an S-2-absorbing submodule, we conclude either s(s2a)(s2b) = s5ab ∈
(P :R M) or s(s2a)(s2m) = s5am ∈ P or s(s2b)(s2m) = s5bm ∈ P . This
implies that ab ∈ (P :R s5M) = (P :R s6M) = ((P :M s6) : M) or am ∈
(P :M s5) = (P :M s6) or bm ∈ (P :M s5) = (P :M s6). Hence, (P :M s6) is a
2-absorbing submodule of M.

3 vn-regular modules

In this section, we will study the concept of vn-regular modules and char-
acterize them in terms of S-2-absorbing submodules. Recall that M is said
to be a vn-regular module if for each m ∈ M, there exists a ∈ R such that
Rm = aM = a2M [9]. It is clear that vn-regular modules are multiplication.
To see this, take a vn-regular R-module M. Let N be a submodule of M. Then
N =

∑
n∈N

Rn. Since M is vn-regular Rn = anM = a2nM for some an ∈ R. Then

we have

N =
∑
n∈N

Rn =
∑
n∈N

anM =

( ∑
n∈N

an

)
M.

Hence, M is a multiplication module. Also, if M is finitely generated vn-
regular module, then IM ∩ JM = IJM for every ideal I and J of R [9,
Lemma 6 and Theorem 1].

Proposition 8. Let M be a finitely generated vn-regular module and S ⊆ R a
multiplicatively closed subset. Suppose that P is a submodule of M with (P :R
M) ∩ S = ∅. Then P is an S-2-absorbing submodule of M if and only if there
exists an s ∈ S such that K ∩L∩N ⊆ P for some submodules K,L and N of
M implies either s(K ∩ L) ⊆ P or s(K ∩N) ⊆ P or s(L ∩N) ⊆ P .

Proof. (⇒): Let M be a finitely generated vn-regular module and P be an
S-2-absorbing submodule of M, where S is a multiplicatively closed subset of
R. Then M is multiplication. Assume that K∩L∩N ⊆ P for some submodules
K,L and N of M . This implies that KLN = (K :R M)(L :R M)(N :R
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M)M ⊆ K ∩ L ∩ N ⊆ P . By Corollary 3, there exists an s ∈ S such that
sKL ⊆ P or sKN ⊆ P or sLN ⊆ P . SinceM is a finitely generated vn-regular
module, by [9, Lemma 6 and Theorem 1], for any submoduleN andN ′ ofM we
have NN ′ = (N :R M)(N ′ :R M)M = (N :R M)M ∩ (N ′ :R M)M = N ∩N ′.
Then we conclude that s(K ∩ L) ⊆ P or s(K ∩N) ⊆ P or s(L ∩N) ⊆ P .
(⇐): Similar argument.

Let M be an R-module. L(M) be the lattice of all submodules of M and
L(R) be the lattice of all ideals of R. Consider the mapping µ : L(M)→ L(R)
defined by µ(N) = (N :R M) for all N ∈ L(M). Recall from [20], an R-
module M is said to be a µ-module if µ is an homomorphism. Smith, in
[20, Lemma 3.1], showed that an R-module M is a µ-module if and only if
(N :R M) + (K :R M) = (N + K :R M) for all N,K ∈ L(M). Also, the
author showed that a finitely generated module is a µ-module if and only if
it is multiplication [20, Theorem 3.8]. Now, in the following, we prove that
Chinese remainder theorem for µ-modules.

Theorem 5. (Chinese Remainder Theorem) Let M be a µ-module and K,N be
two submodules such that K +N = M. Then M/ (K ∩N) ∼= M/K ×M/N.

Proof. Suppose that M is a µ-module and K,N are two submodules such
that K + N = M. Then by [20, Lemma 3.1], (M :R M) = R = (K :R
M) + (N :R M). Then there exist x ∈ (K :R M) and y ∈ (N :R M) such
that 1 = x + y. Now, consider the mapping π : M → M/K ×M/N defined
by π(m) = (m + K,m + N) for each m ∈ M. Then π is well defined and
R-homomorphism. Take (m + K,m′ + N) ∈ M/K ×M/N for some m,m′ ∈
M. Then m = xm+ym and m′ = xm′+ym′. Now, put m? = ym+xm′. Then
note that m?+K = (ym+xm′)+K = ym+K = (xm+ym)+K = m+K and
similarly we have m? +N = m′ +N. Thus π(m?) = (m+K,m′ +N) and so
π is epimorphism. On the other hand Ker(π) = K ∩ N and so by the first
isomorphism theorem, we get M/ (K ∩N) ∼= M/K ×M/N.

Recall from [11], an R-module M is said to be a reduced module if for
each a ∈ R and m ∈ M, am = 0 implies that aM ∩ Rm = 0. Note that an
R-module M is a reduced module if and only if a2m = 0 for some a ∈ R and
m ∈M implies am = 0. In [9, Lemma 10], the authors proved that all finitely
generated vn-regular modules are reduced.

Proposition 9. Let M be a finitely generated reduced module and S ⊆ R a
multiplicatively closed subset. Suppose that all proper submodules are S-2-
absorbing. Then for each a ∈ R, there exists s? ∈ S such that s?aM ⊆ a2M.

Proof. Suppose that M is a finitely generated reduced module and its all
proper submodules are S-2-absorbing, where S is a multiplicatively closed
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subset of R. Take an element a ∈ R. If a3M = M, then aM = M ⊆ a2M =
M and we are done. Assume that a3M is a proper submodule. Since a3M =
aa(aM) ⊆ a3M, by Lemma 1, there exists s ∈ S such that sa2M ⊆ a3M. On
the other hand, since M is finitely generated, we can write M = Rm1+Rm2+
· · · + Rmn for some m1,m2, . . . ,mn ∈ M. Then for each i = 1, 2, . . . , n, we
have sa2mi = a3ri,1m1+a3ri,2m2+· · ·+a3ri,nmn and so we have −a3ri,1m1−
a3ri,2m2 − . . .+ (sa2 − a3ri,i)mi − . . .− a3ri,nmn = 0. Thus we conclude that
det(∆)M = 0, where ∆ is the n by n matrix

sa2 − a3r1,1 −a3r1,2 . . . −a3r1,n
−a3r2,1 sa2 − a3r2,2 . . . −a3r2,n

...
...

. . .
...

−a3rn,1 −a3rn,2 · · · sa2 − a3rn,n


n×n

. Then we conclude that (a2)n(sn + ax)M = 0 for some x ∈ R. This implies

that (a(sn + ax))
2n
m = 0 for all m ∈ M. Since M is reduced, we get a(sn +

ax)m = 0 and so snam = −a2xm. This implies that s?aM ⊆ a2M where
s? = sn ∈ S.

Let M be an R-module. Recall from [2], M is said to be a simple module if
the only submodules of M are {0} and M. Note that all simple modules are vn-
regular (See, [9, Example 2]). Also, an R-module M is said to be semisimple
if M = ⊕i∈IMi is the direct sum of simple submodules {Mi}i∈I . Now, we
characterize vn-regular modules in terms of 2-absorbing submodules.

Theorem 6. Let M be a finitely generated module. The following staments
are equivalent:

(i) M is reduced multiplication module and all proper submodules are 2-
absorbing.

(ii) M is vn-regular module and there are at most two prime submodules.
(iii) M is simple or M is multiplication module such that M ∼= M1⊕M2 for

some simple modules M1 and M2.

Proof. (i)⇒ (ii) : Suppose that M is a finitely generated reduced multiplica-
tion module and all proper submodules are 2-absorbing. Put S = u(R) and
apply Proposition 9. Then aM = a2M for each a ∈ R, that is, a is M -vn-
regular element of R. By [9, Theorem 1], R/ann(M) is a vn-regular ring and
so by [9, Lemma 7], M is vn-regular module. First, we will show that all
prime submodules are maximal. Let P ? be a prime submodule of M. Then
(P ? :R M) is a prime ideal in R and (P ? :R M)/ann(M) is a prime ideal in
R/ann(M). Since R/ann(M) is vn-regular, (P ? :R M)/ann(M) is a maximal
ideal in R/ann(M) and so (P ? :R M) is a maximal ideal in R. Let N be a sub-
module of M containing P ?. Since (P ? :R M) ⊆ (N :R M), we conclude either
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(N :R M) = R or (N :R M) = (P ? :R M). As M is multiplication, N = M or
N = P ?. Hence, P ? is a maximal submodule of M. Now, we will show that
M has at most two prime submodules. Let P1, P2, P3 be distinct prime sub-

modules of M. Put P =

3⋂
i=1

Pi. Then by assumption, P is 2-absorbing submod-

ule. By [5, Proposition 1], (P :R M) =

3⋂
i=1

(Pi :R M) is a 2-absorbing ideal of

R. As

3∏
i=1

(Pi :R M) ⊆ (P :R M), by [4, Theorem 2.13], without loss of gener-

ality we may assume that (P1 :R M)(P2 :R M) ⊆ (P :R M) ⊆ (P3 :R M). As
(P3 :R M) is a prime ideal, we get either (P1 :R M) ⊆ (P3 :R M) or
(P2 :R M) ⊆ (P3 :R M). Then we have P1 ⊆ P3 or P2 ⊆ P3. As P1 and
P2 are maximal submodules, we have either P1 = P3 or P2 = P3. Hence,
M has at most two prime submodules.
(ii) ⇒ (iii) : Suppose that M is finitely generated vn-regular module and
M has at most two prime submodule. Since M is finitely generated vn-regular
module, by [9, Lemma 6], R/ann(M) is a vn-regular ring. Thus similar in the
proof (i) ⇒ (ii) shows that all prime submodules are maximal. Also by [9,
Lemma 11], 0 = P or 0 = P ∩Q, where P,Q are prime submodules of M . If
0 = P , then M is simple. So assume that 0 = P∩Q for some prime submodules
P and Q of M. Then P +Q = M . By Theorem 5, M ∼= M/P ×M/Q, where
M/P and M/Q are simple modules.
(iii)⇒ (i) : Suppose that M is simple. Then zero submodule is clearly prime
so that 2-absorbing. Now, assume that M ∼= M1 ⊕M2 is multiplication mod-
ule for some simple modules M1 and M2. Without loss of generality, we may
assume that M = M1⊕M2 is multiplication module, where M1,M2 are simple
submodules of M . Since M = M1⊕M2 is finitely generated multiplication, M
is µ-module so that (M :R M) = R = (M1 +M2 :R M) = (M1 :R M)+(M2 :R
M). This implies that ann(M1)+ann(M2) = R. Let K be a submodule of M .
Then by [6, Lemma 2.6], all the posibilities are 0⊕0, 0⊕M2,M1⊕0,M1⊕M2

for K. If K is 0⊕M2 or M1⊕0, then K is prime. Assume that K = 0⊕0. Then
(K :R M) = ann(M1) ∩ ann(M2), where ann(M1) and ann(M2) are maxi-
mal ideals of R. Since M is multiplication module, by [4, Theorem 2.13] and
[17, Theorem 2.3], K is a 2-absorbing submodule of M. Hence, all proper
submodules are 2-absorbing.
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